Космические системы связи. Космическая связь. Центры, системы и развитие космической связи. Центры дальней космической связи

Эту статью мы хотим посвятить российскому оператору спутниковой связи. Многим интересна как специфика его деятельности, так и местоположение, возможность трудоустройства. Речь идет о "Космической связи" (ГПКС). "Пятьдесят лет на орбите" - каково это? Давайте поближе познакомимся с учреждением.

(ГПКС) - что это?

Что скрывается за "Космической связью"? Это:

  • Услуги вещания и связи с глобальным покрытием на территории 52 стран.
  • Высококлассная наземная инфраструктура: московский технический центр и пять отделений от столичного региона до Хабаровского края.
  • Современный спутниковый комплекс - 12 космоаппаратов на геостационарной орбите.
  • 5 телепортов.
  • Информационная структура, охватывающая всю территорию РФ.

ФГУП (ГПКС) - национальный представитель услуг спутниковой связи. Организация подведомственна "Россвязи" (федеральному российскому агентству связи). Генеральный директор сегодня - Прохоров Ю. В.

Организация была основана в 1967 году. За временной путь до наших дней он сменила несколько названий:

  • Союзный узел радиосвязи и радиовещания №9.
  • "Космическая связь" - ГПКС.

Деятельность компании можно разделить на три вектора:

  • Услуги связи.
  • Цифровое радио- и телевещание.
  • Управление спутниками и контроль за их работой.

Расположение компании

Адрес "Космической связи" (ГПКС): Москва, Первый Гончарный переулок, 8, строение 6. С местоположением вы можете подробно ознакомиться на карте ниже.

Структура ГПКС

Система ФГУП "Космическая связь" следующая:


Наземная инфраструктура

ФГУП "Космическая связь" (ГПКС) имеет следующие наземные отделения:


История развития

Проследим за этапами истории развития ГПКС (фото "Космической связи" также представлены в статье):


Цифровое теле- и радиовещание

Услуга "цифровое телерадиовещание" представлена в четырех направлениях:

Услуги связи

Тут выделяются следующие векторы:


Космическая связь

передача информации: между земными пунктами и космическим летательным аппаратами (КЛА); между двумя или несколькими земными пунктами через расположенные в космосе КЛА или искусственные средства (Пояс иголок , облако ионизированных частиц и т. п.); между двумя или несколькими КЛА. В космосе широко используются системы связи самого различного назначения: для передачи телеметрической, телефонной, телеграфной, телевизионной и прочей информации; для передачи сигналов команд и управления КЛА; для проведения траекторных измерений. Наиболее широко в системах К. с. используется радиосвязь. Основные особенности систем К. с., отличающие их от наземных: непрерывное (часто весьма быстрое) изменение положения КЛА; необходимость знания текущих координат КЛА и наведения приёмных и передающих антенн земного пункта связи на заданный КЛА; непрерывное изменение частоты принимаемых сигналов из-за Доплера эффект а; ограниченные и изменяющиеся во времени зоны взаимной видимости земного пункта и КЛА; ограниченная мощность бортовых радиопередатчиков КЛА; большая дальность связи и как следствие работа с очень малыми уровнями принимаемых радиосигналов. Всё это обусловливает создание для К. с. специальных комплексов сложной аппаратуры, включающих наводящиеся антенны больших размеров, приёмные устройства с малым уровнем шумов, высокоэффективные системы обнаружения, выделения и регистрации радиосигналов. Необходимость знания текущего положения КЛА требует периодического измерения его координат и вычисления параметров его траектории. Т. о., система К. с. существует, как правило, при совместном действии измерительных средств (система траекторных измерений), вычислительного центра и комплекса управления КЛА. Для радиоканалов К. с. в зависимости от их направления и назначения применяются различные диапазоны частот. Их распределение и порядок использования определяются регламентом радиосвязи (См. Регламент радиосвязи).

Связь Земля - КЛА. Связь между земным пунктом и КЛА предназначается для обеспечения двусторонней передачи всех видов необходимой информации. Для связи с дальними КЛА (автоматическими межпланетными станциями - АМС) характерны крайне малые уровни принимаемых радиосигналов и большое время взаимной видимости, поскольку изменение направления земной пункт - КЛА определяется в основном скоростью суточного вращения Земли. Для связи с близкими КЛА (искусственными спутниками Земли (См. Искусственные Спутники Земли) - ИСЗ, космическими кораблями (См. Космический корабль) - КК, орбитальными космическими станциями и др.) характерны большая скорость изменения направления связи, малое время взаимной видимости, относительно небольшие дальности и соответственно достаточно большие уровни радиосигналов.

Линия Земля - борт КЛА (З - Б) и борт КЛА - Земля (Б - З) несут различную информационную нагрузку и имеют различный энергетический потенциал. Линия З - Б обеспечивает передачу на КЛА сигналов управления, траекторных измерений, телефонную, телеграфную, связь с космонавтами на обитаемых КК. Линия Б - З, как правило, имеет значительно более низкий энергетический потенциал, т. к. мощность передатчика КЛА ниже мощности передатчика земной станции в линии З - Б (обычные мощности на КЛА - единицы-десятки вт, на земной станции - единицы-десятки квт ). Однако основной поток информации идёт именно по линии Б - З. Это вынуждает применять на земных пунктах для приёма информации с КЛА антенны с весьма большой эффективной площадью (десятки м 2 ), а в случае приёма информации с межпланетных КЛА (поскольку мощность принимаемого сигнала уменьшается пропорционально квадрату расстояния) необходимы эффективные площади в сотни и тысячи м 2 . Эффективные площади 2-5 тыс. м 2 достигаются только в уникальных дорогостоящих антенных системах. Посредством таких антенных систем может быть обеспечена телефонная связь на межпланетных расстояниях.

Начало радиосвязи с человеком в космосе было положено 12 апреля 1961, когда лётчик-космонавт Ю. А. Гагарин впервые в истории человечества облетел Землю на КК «Восток» и во время полёта поддерживал устойчивую двустороннюю телефонно-телеграфную связь с Землёй на метровых и декаметровых волнах. В последующих полётах КК «Восток» и «Восход» радиосвязь с Землёй совершенствовалась и была с успехом опробована между КК в групповых полётах. Во время полёта КК «Восток-2» в августе 1961 впервые из космоса на Землю передавалось телевизионное изображение лётчика-космонавта Г. С. Титова. При передаче телевизионного изображения для сужения спектра частот число кадров было уменьшено до 10 в сек. В дальнейшем стали применяться телевизионные системы с обычным стандартом (см. Космовидение). Наибольшая дальность двусторонней радиосвязи достигнута при полётах АМС к планетам. Например, при полётах к Марсу дальность связи между земным пунктом и АМС достигала 350 млн. км, к Юпитеру - 800-900 млн. км. С целью обеспечения таких дальних связей на АМС обычно используется направленная на Землю антенна.

Связь через ИСЗ. Обычно связь на большие расстояния обеспечивается по радиорелейным линиям прямой видимости, состоящим из двух оконечных и ряда промежуточных пунктов-ретрансляторов, отстоящих друг от друга на расстояние прямой видимости (50-70 км ). При установке одного промежуточного ретранслятора на борту ИСЗ с высокой орбитой можно осуществить связь между двумя пунктами, удалёнными один от другого на тысячи км. Максимальная дальность непосредственной связи при этом определяется возможностью видения ИСЗ одновременно с каждого пункта. Связные ИСЗ могут применяться как в отдельных линиях связи, так и в сетях радиорелейных линий для передачи телевизионных программ, многоканальной телефонии и телеграфии и др. видов информации. Примером сети, имеющей большое число земных станций, может служить система действующая в Советском Союзе с 1967. Для связи могут использоваться ИСЗ, обращающиеся по различным орбитам и на разных высотах. Основные варианты орбит для связных ИСЗ: круговая стационарная, сильно вытянутая эллиптическая синхронная, средневысокая круговая, низкая круговая. ИСЗ на стационарной орбите (стационарный ИСЗ) постоянно находится («висит») над выбранной точкой экватора и обеспечивает круглосуточную связь между земными станциями на широтах меньше 75° в радиусе до 8000 км от точки, над которой расположен спутник, например ИСЗ «Интелсат». Три таких ИСЗ, находящихся на равном удалении вдоль экватора, осуществляют связь любых земных станций в пределах указанных широт. Для районов, расположенных на широтах выше 70-75°, наиболее выгодны сильно вытянутые эллиптические синхронные орбиты с апогеем над центром обслуживаемой линии связи и с периодом обращения ИСЗ в половину или целые сутки (см. ИСЗ «Молния »). При надлежащем выборе угла наклонения и места расположения апогея орбиты спутник будет значительную часть суток находиться в пределах видимости из заданного района. Для работы с ИСЗ на стационарной или эллиптической синхронной орбите применяются на земных пунктах связи антенны большого размера, т. к. расстояние ИСЗ - земной пункт превышает 30000 км и мощность принимаемых сигналов мала. ИСЗ на средневысоких и низких круговых орбитах, например ИСЗ «Курьер», «Реле», обеспечивают значительно большие мощности принимаемых сигналов. Однако уменьшение высоты полёта сокращает время взаимной видимости спутника и земного пункта связи и приводит в конечном счёте к значительному увеличению количества спутников, требуемых для непрерывной связи. Кроме того, усложняется система слежения и наведения антенн земных станций. При малой высоте полёта непосредственная связь между значительно удалёнными пунктами невозможна и приходится применять систему радиолиний с задержанной ретрансляцией. Однако в этом случае уровни принимаемых сигналов достаточно велики и не нужны большие и дорогостоящие антенные системы, благодаря чему связь с низкими ИСЗ может проводиться даже небольшими подвижными пунктами. Связной ИСЗ для транзитной передачи сигналов может быть оснащен активным ретранслятором, обеспечивающим также усиление сигналов, или представлять собой пассивный ретранслятор, т. е. отражатель. Кроме ИСЗ в виде отражателя были предложены и испытаны линии связи с рассеянными отражателями в виде пояса иголок, облака ионизированных частиц. Пассивный ретранслятор может обслуживать радиосеть, состоящую из большого числа линий с различными частотами радиосигналов, т. к. он отражает или рассеивает энергию многих одновременно приходящих радиосигналов без взаимных помех, например ИСЗ «Эхо». В отличие от него, активный ретранслятор может обслуживать сеть связи только с ограниченным числом линий, причём для устранения взаимных помех необходимо применять частотное, временное или кодовое разделение сигналов, поддерживать необходимый их уровень и не допускать перегрузок ретранслятора. Несмотря на это, наибольшее распространение имеют системы с активными ретрансляторами, которые обеспечивают одновременную передачу сообщений по нескольким (до десятка) телевизионным или нескольким тысячам телефонных каналов, например ИСЗ «Молния», «Интелсат», «Синком».

Для экономичности связи применяют многоканальные линии радиосвязи, что приводит к необходимости увеличения полосы пропускания (См. Полоса пропускания) частот в линии (см. Многоканальная связь). Широкая полоса требуется также для ретрансляции телевизионных сигналов. С расширением полосы пропускания растет опасность искажения сообщений помехами радиоприёму (См. Помехи радиоприёму). Поэтому приём сообщений с допустимыми искажениями - важнейшая задача, решаемая увеличением мощности радиосигналов, выбором частот связи, уменьшением уровня шумов радиоприёмников, применением эффективного кодирования, выбором типа модуляции, способа приёма и обработки радиосигналов при малом отношении сигнал/помеха и др. Например, частоты радиосигналов выбирают в пределах от 1 до 10 Ггц, т. к. на меньших частотах резко растут помехи от шумов космоса (См. Шумы космоса), а на больших - от шумов атмосферы (См. Шумы атмосферы); в первых каскадах усилителей радиоприёмников земных станций используют малошумящие квантовые усилители (См. Квантовый усилитель) и параметрические усилители, охлаждаемые жидким гелием.

В линии связи с пассивным ретранслятором для обеспечения необходимого уровня принимаемого сигнала увеличивают мощность передатчика и размеры антенны земной станции, размеры отражателя ретранслятора или переходят к ретрансляторам с направленным рассеянием энергии на земную станцию, а также сужают полосу пропускания частот в линии и понижают скорость передачи сообщений. Перечисленные меры имеют свои пределы, т. к. увеличивают стоимость оборудования линии связи и её эксплуатации.

Связь между КЛА. Связь между КЛА может осуществляться для обмена информацией между экипажами двух или нескольких КК, одновременно находящихся в космосе, и между экипажами КК и космонавтами, находящимися в открытом космическом пространстве. Кроме того, может осуществляться связь между двумя автоматическими КЛА с целью ретрансляции сигналов, измерения положения, навигации, управления движением и сближения. Особенности связи между КЛА следующие. Как правило, связь обеспечивается между взаимодействующими КЛА, т. е. между ИСЗ, на сравнительно небольших расстояниях, например между КК «Восток-3» и «Восток-4» или между «Восток-5» и «Восток-6». Из-за трудности взаимной ориентации антенн КЛА предпочтительна ненаправленная связь. Отсутствие воздействия атмосферы, а при высоких орбитах и ионосферы обеспечивает более свободный выбор диапазона радиочастот и использование оптических средств связи. При выборе диапазона частот и организации связи между ИСЗ необходимо учитывать возможность помех от мощных наземных станций. Системы К. с. усложняются при высадке космических экспедиций на Луну, например КК «Аполлон », или другие небесные тела, т. к. требуется поддерживать связь экспедиции с КК, остающимся на планетоцентрической орбите, и (через КК или непосредственно) с Землёй. В этом случае объединяются все особенности связи между ИСЗ и земным пунктом, а также между дальними КЛА и земными пунктами.

В перспективе будут созданы системы передачи телевизионных программ через стационарные ИСЗ непосредственно на телевизоры; при этом открываются возможности полной телефикации и обеспечения передачи центральных программ в любое место на Земле. С совершенствованием квантовых оптических генераторов (Лазер ов) становится перспективной оптическая связь, т. к. на оптических волнах можно передать сообщения на сверхдальние расстояния (до десятков световых лет) благодаря очень высокой направленности луча (расхождение луча не более долей сек ) при относительно малых размерах излучателей и приемлемой потребляемой мощности. Но узконаправленное излучение и приём оптических волн требуют тщательной стабилизации устройств, ориентации оптических систем на КЛА, сложного вхождения в связь и поддержания её. Наиболее выгодны оптические линии связи между КЛА, находящимися за пределами земной атмосферы, т. к. атмосфера сильно поглощает и рассеивает энергию оптических волн.

Лит.: Системы связи с использованием искусственных спутников Земли, Сб. ст., пер. с англ., М., 1964; Петрович Н. Т., Камнев Е. Ф., Вопросы космической радиосвязи, М., 1965; Спутники связи, пер. с англ., М., 1966; Крэсснер Г.-И. и Михаелс Дж.-В., Введение в системы космической связи, пер. с англ., М., 1967; Космические радиотехнические комплексы, М., 1968; Космические траекторные измерения, М., 1969.

Ю. К. Ходарев.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Космическая связь" в других словарях:

    Космическая радиосвязь ФГУП «Космическая связь» Список значений слова или словосочетания со ссылками на соответствующие статьи. Если вы попали сюд … Википедия

    КОСМИЧЕСКАЯ связь, радио или оптическая (лазерная) связь между наземными приемопередающими станциями и космическими аппаратами (КА), между несколькими наземными станциями преимущественно через спутники связи или пассивные ретрансляторы (например … Современная энциклопедия

    Радиосвязь или оптическая (лазерная) связь, осуществляемая между наземными приемно передающими станциями и космическими аппаратами, между несколькими наземными станциями преимущественно через спутники связи или пассивные ретрансляторы (напр.,… … Большой Энциклопедический словарь

    Космическая связь - КОСМИЧЕСКАЯ СВЯЗЬ, радио или оптическая (лазерная) связь между наземными приемопередающими станциями и космическими аппаратами (КА), между несколькими наземными станциями преимущественно через спутники связи или пассивные ретрансляторы (например … Иллюстрированный энциклопедический словарь

    космическая связь - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN space communicationspace telecommunication … Справочник технического переводчика

    Радиосвязь или оптическая (лазерная) связь, осуществляемая между наземными приёмно передающими станциями и космическими аппаратами, между несколькими наземными станциями преимущественно через спутники связи, между несколькими космическими… … Энциклопедический словарь

В настоящее время космическая (спутниковая) связь применяется в больших масштабах и приобретает всемирное значение. Основ­ные ее преимущества состоят в высоком качестве и надежности каналов связи, большой пропускной способности, обеспечиваю­щей возможность одновременной связи сотен и тысяч абонентов во всем мире независимо от места расположения, а также отно­сительно низкой стоимости канала.

Система космической связи включает три основных элемента: земные оконечные, передающие и приемные станции, спутник-ретранслятор. Связь между спутником и земными станциями ус­танавливается, если между ними имеется прямая видимость.

В космосе система связи используется для передачи телеметри­ческой, телефонной, телеграфной, телевизионной и прочей ин­формации. Наиболее широко в космической связи посредством спутников используется радиосвязь.

В обобщенном виде космическая связь представляет собой передачу различной информации: между земным пунктом и космическим летательным аппаратом; между двумя или не­сколькими земными пунктами через расположенные в космосе летательные аппараты; между двумя или несколькими лета­тельными аппаратами.

Глобальную, надежную и быструю связь с абонентами, нахо­дящимися на земле, в море и воздухе, осуществляет международ­ная космическая система Инмарсат. Системой управляет между­народная организация с таким же названием. Инмарсат имеет статус межправительственной организации, в состав которой вхо­дят более 80 государств. Интересы стран - членов этой органи­зации представляют соответствующие предприятия, организации, уполномоченные правительствами. В Российской Федерации это государственное предприятие «Морсвязьспутник».

Основная цель организации Инмарсат - предоставление пользователям космического сегмента возможности для радио­связи с морскими, речными, воздушными судами, автомобилями и другими подвижными объектами.

Статус, цели и принципы деятельности Инмарсата опреде­лены конвенцией и эксплутационным соглашением, подписан­ным в 1979 г. несколькими странами-учредителями, в том числе бывшим СССР.

Конвенция предусматривает доступность в Инмарсат всех государств, недопущение каких-либо дискриминаций и функ­ционирование космической связи только в мирных целях. До­пускается исключительная возможность использования системы вооруженными силами, если это служит делу мира, безопасно­сти всех стран и не нарушает устава и принципов Организации Объединенных Наций.

Система Инмарсат включает:

а) космический сегмент (спутники и средства обеспечения их работы);

б) земной сегмент (фиксированные зонные станции);

в) абонентские станции (терминалы).



В качестве ретрансляторов сообщений между абонентскими станциями, установленными на судах, в автомобилях, самолетах, и земными станциями, соединенными с международными и национальными наземными сетями связи, служат космические спутники. В космический сегмент системы Инмарсат входят четыре действующих и четыре запасных спутника с ретрансляторами, «неподвижно» висящие в заданных точках над экватором на высоте 36 тыс. км и обслуживающие весь земной шар.

Земной сегмент системы космической связи - это сеть фиксированных земных станций, т.е. промежуточных звеньев между наземными национальными и международными сетями связи и околоземными спутниками. Количество земных станций превы­сило 40, часть из них управляется российским государственным предприятием «Морсвязьспутник».

Земные станции Инмарсата взаимодействуют с соответствую­щими наземными сетями, в частности с такими, как:

компьютерная сеть В1МСОМ;

станции электронной почты;

международная телеграфная сеть «Телекс»;

сеть передачи данных с пакетной коммутацией;

цифровая сеть с комплексными услугами;

коммутируемые телефонные сети общего пользования.

На международном уровне согласована оплата космической связи за:

а) услуги земных станций Инмарсата;

б) использование наземных каналов связи;

в) космический сегмент Инмарсата.

В настоящее время космическая связь совершенствуется, рас­тет количество стран, пользующихся этим видом связи.

1. Связь способствует:

а) созданию бесконфликтных ситуаций на товарном рынке;

б) росту производительности труда на предприятии;

в) улучшению технологии производства;

г) рационализации коммерческо-хозяйственных отношений на рынке.

2. Характерные особенности отрасли связи:

а) социальный характер;

б) определенная информация подвержена физическим изменениям;

в) процесс передачи информации двусторонний;

г) коммерческий характер.

3. Предприятия и организации связи подразделяются:

а) в зависимости от обслуживаемой территории;

б) по принадлежности;

в) в зависимости от технологической загрузки;

г) по объему деятельности.

4. Почтовая связь широко используется благодаря:

а) высокой скорости передачи информации;

б) конфиденциальности;

в) концентрации информационного потока;

г) документальности передаваемой информации.

5. Принципы деятельности в области связи:

а) стимулирование использования средств связи;

б) соблюдение законности;

в) конкуренция между видами связи;

г) свобода передачи сообщений по всей территории страны.

6. Виды почтовой связи:

а) общего пользования;

б) корпоративная;

в) региональная;

г) федеральная фельдъегерская.

7. К предприятиям почтовой связи относятся:

а) межрегиональные почтовые узлы;

б) отделения связи;

в) прижелезнодорожные почтамты;

г) приморские почтамты.

8. Почтовыми отправлениями являются:

а) пластиковые карты;

б) бандероли;

в) крупногабаритные предметы;

г) почтовые карточки.

9. Электрическая связь - это:

а) радиовещание проводное;

б) телеграфная связь;

в) мобильная сотовая связь;

г) радиоволновая связь.

10. Электронную почту составляет:

а) телекс;

б) международный телефон;

в) мобильная связь;

г) телеграммы.

11. «Модем» - своеобразный переводчик между компьютерными и телефонными сетями:

12. Место функционирования маршрутизатора:

а) телевизионная связь;

б) пейджинговая связь;

в) радио связь;

г) Интернет.

13. Действие пейджинговой связи основано на:

а) технической связи с бюрофаксом;

б) радиопоиске;

в) применении телевизионных волн;

г) тесном взаимодействии с сотовой связью.

14. Название «сотовая связь» произошло:

а) по паролю «сто» для первых провайдеров;

б) по числу операций, совершаемых современными мобильными телефонами;

в) из-за соприкосновения друг с другом малых зон;

г) по номеру патента на изобретение такой связи.

15. Основные элементы космической связи:

а) земные оконченные станции;

б) многоступенчатые стартовые ракеты;

в) центральная диспетчерская, расположенная в высокогорье;

г) передающие и приемные станции.

16. Необходима прямая видимость при установлении связи между спутником и земными станциями:

17. В процессе взаимодействия между «трубкой» и системой сот осуществляется:

а) поиск и вызов нужного абонента;

б) активизация детофакса;

в) настрой на соответствующие частоты;

г) передача на расстояние речевой информации с помощью проводных электросигналов.

18. Целесообразность выхода в сеть Интернет субъектов товарного рынка обосновывается:

а) конкуренцией товаропроизводителей;

б) наличием большого количества физических и юридических лиц, имеющих круглосуточный доступ в компьютерную сеть;

в) улучшением сервисного обслуживания потребителей;

г) возможностью прямой продажи товаров, услуг.

19. Соответствие использования конкретной связи с видами систе­мы связи:

20. Компьютерная сеть предусматривает подключение информаци­онных служб:

а) информационных систем для массовых потребителей;

б) специальной связи федерального органа исполнительной власти;

в) профессионально ориентированных баз данных, занимающихся продажей информационных услуг;

г) факсимильного способа передачи неподвижного изображения.

2019-12-05. «Азеркосмос» и ГП КС подписали соглашение о сотрудничестве в области спутниковой связи.
3 декабря 2019 года в столице Азербайджана, в городе Баку в рамках международной выставки в сфере телекоммуникационных и информационных технологий BAKUTEL-2019 российский оператор спутниковой связи ФГУП «Космическая связь» (ГП КС) и азербайджанский оператор спутниковой связи ОАО «Азеркосмос» подписали соглашение о сотрудничестве в области услуг спутниковой связи и вещания.
Подписание соглашения прошло в присутствии участников и гостей выставки. Подписи под документом поставили Заместитель Генерального директора по развитию бизнеса ГП КС Ксения Дроздова и Заместитель Председателя Совета директоров ОАО «Азеркосмос» Ровшан Рустамов.
Целью соглашения является объединение усилий и организация совместной работы азербайджанского и российского операторов в области создания и развития сетей спутниковой связи и вещания для различных секторов экономики и государственного управления, как на территории России и Азербайджана, так и в странах Европы, Ближнего Востока и Африки. С этой целью планируется использовать возможности космических спутников «Azerspace-1», «Azerspace-2», а также спутников ГП КС серии «Экспресс-АМ», которые обеспечивают устойчивое покрытие вышеуказанных регионов, включая территории стран СНГ.
Российский и азербайджанский спутниковые операторы обладают уникальным опытом реализации спутниковых проектов в области организации корпоративных сетей связи, магистральных каналов доступа в Интернет, регионального ТВ вещания, а также работы с подвижными объектами на суше, на море и в воздухе.
Совместная работа над проектами позволит двум компаниям усилить свое присутствие в регионах Евразийского и Африканского континентов, а также обеспечить максимальный охват вертикальных рынков предоставления услуг спутниковой связи и вещания.
«Данное соглашение является логичным продолжением укрепления торгово-экономических связей между Россией и Азербайджаном, и его подписание продиктовано текущей конъюнктурой мирового спутникового рынка. Особо стоит подчеркнуть, что наше партнёрство выходит далеко за рамки сугубо регионального сотрудничества в Каспийском регионе. ГПКС и Азеркосмос уже много лет успешно работают на рынках Европы, Ближнего Востока и Африки. Объединение усилий двух национальных спутниковых операторов также открывает потенциал для новой страницы Российско-Азербайджанского сотрудничества - создание совместного экспортного приложения для зарубежных потребителей. Мы высоко ценим партнерские отношения, которые у нас складываются с азербайджанскими коллегами. Надеемся, что достигнутые сегодня договоренности станут надежной основой для их дальнейшего развития, а также для укрепления долгосрочного взаимовыгодного сотрудничества между нашими компаниями», - отметила Ксения Дроздова, Заместитель Генерального директора по развитию бизнеса ГП КС.
«Испокон веков отношения между Азербайджаном и Россией носили дружественный характер. С таким же успехом сегодня эти два государства сотрудничают на уровне государственных и частных организаций на принципах взаимовыгодного сотрудничества и стратегического партнерства. Уверен, что эти отношения будут и впредь расширяться и укрепляться, способствуя дальнейшему развитию двусторонних отношений во всех областях экономики, включая космическую промышленность. Сотрудничество с ФГУП «Космическая связь», которое входит в десятку крупнейших спутниковых операторов мира по объему орбитально-частотного ресурса – большая честь для «Азеркосмос». Мы верим, что взаимовыгодное сотрудничество между Азеркосмос и ГП КС будет и дальше развиваться в интересах наших организаций», – отметил руководитель отдела продаж ОАО «Азеркосмос» Йолчу Гасанов.